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TUM-T39-04-10, LA-UR-04-4810, LBNL-55716, hep-lat/04070091st July 2004Revised version 1st January 2005, re-revised version 10th Marh 2005. Aepted by Phys. Rev. D.A nuleon in a tiny boxPaulo F. Bedaque�Lawrene-Berkeley Laboratory, Berkeley, CA 94720, USAHarald W. Grie�hammeryInstitut f�ur Theoretishe Physik (T39), Tehnishe Universit�at M�unhen, D-85747 Garhing, GermanyGautam RupakzLos Alamos National Laboratory, Los Alamos, NM 87545, USAWe use Chiral Perturbation Theory to ompute the nuleon mass-shift due to �nite volume andtemperature e�ets. Our results are valid up to next-to-leading order in the \�-r�egime" (mL �m� � 1) as well as in the \p-r�egime" (mL � m� � 1). Based on the two leading orders, wedisuss the onvergene of the expansion as a funtion of the lattie size and quark masses. Thisresult an be used to extrapolate lattie results obtained from lattie sizes smaller than the pionloud, avoiding the numerial simulation of physis under theoretial ontrol. An extration of thelow-energy oeÆient 3 of the hiral Lagrangean from lattie simulations at small volumes and a\magi" ratio � = 1:22262L might be possible.Lattie QCD simulations are neessarily performed in �nite boxes. Finite-size e�ets are ontrolled by the parametermL, where L is the lattie size and m the mass of the lightest partile, in QCD, the pion. Physial results an beobtained in the limit mL� 1. As the pion masses ahieved in simulations approah the physial value it beomesharder to ful�ll this ondition. However, most of the on�gurations in large latties desribe pions traveling at largedistanes of the order of L. Sine the physis of these soft-pions is strongly onstrained by hiral symmetry, strongtheoretial ontrol over them makes their numerial simulation unneessary. One an thus obtain physial results bysimulating in smaller latties and using Chiral Perturbation Theory (�PT) or some other relevant e�etive theory toinlude the soft-pion physis ut o� by the box size and extrapolate the results to the in�nite volume limit. Anotherway to desribe the same proedure gives added insight: The low-energy physis in the in�nite and �nite volume aredesribed by the same e�etive theory with the same low-energy onstants, sine the values of these onstantsenapsulate short-distane physis that is not modi�ed by �nite-volume e�ets. The omparison of �nite volumelattie results with the e�etive theory predition allows one therefore to determine the value of some of the lowenergy onstants. Those, in turn, an be used to determine physial observables in the in�nite-volume limit.This general proedure has been arried out in the r�egime mL� 1, where standard �PT an be applied, to avariety of one nuleon observables, see e.g. [1℄. However, it is for mL � 1 (in the so-alled �-r�egime [2℄) that theprogramme desribed above is fully realized. For suh small boxes, most of the pion loud surrounding a baryon isexluded, and we are left with a bare nuleon. There are some modi�ations to the usual �PT power ounting inthis r�egime. The �rst and obvious one is that the momenta are quantized in units of 2�=L. More importantly, thepion zero mode utuations are not suppressed, beome non-perturbative and need to be treated exatly [2℄. Theyredue the value of the hiral ondensate and make the hiral ondensate disappear altogether in the hiral limit.This is to be expeted sine there is no hiral symmetry breaking at �nite volumes. Reently, the �-r�egime in themeson setor and its relevane to lattie QCD have been assessed in a number of papers [3℄. In the present work, weextend the idea to the one-baryon setor. Convergene in the baryoni setor is typially worse than in the mesonisetor, as it reeives ontributions at every order in p=(4�f), unlike the meson setor ase where the expansionparameter is (p=(4�f))2. We address this issue by omparing the sizes of leading and next-to-leading orderontributions in a alulation of the nuleon mass.� pfbedaque�lbl.govy hgrie�ph.tum.dez grupak�lanl.gov
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2We onsider one nuleon in a small box of size � � L3 for 2�=(4�f) <� �; L <� 2�=m, the \�-r�egime". L is the size ofthe spatial diretions, � the temporal extend of the box, namely the inverse temperature. In this r�egime, �PT isvalid, exept that the relative ounting between p and m is hanged. Instead of the usual ounting1=L; 1=� � m � p (p-ounting), we use 1=L; 1=� � mq � pm � �, hene the name \�-r�egime" [2℄. For small boxes,the �rst non-zero pion mode has a momentum p = 2�=L >� �, so we inlude the �(1232) as expliit degree offreedom, ounting, in the �-r�egime, � � m � �2.THE � EXPANSION IN THE BARYON SECTORLow-energy properties (Q � 1=L; 1=�) of the system are desribed by the e�etive Eulidean LagrangeanL = L� + LN + L�;L� = f2TrA�A� � Bf22 Tr(�yRM�L + �yLMy�R) + � � � ;LN = N yD0N � gAN y~� � ~AN +N y[� ~D22M + gA2M f~� � ~D;A0g � 2B1Tr(�yRM�L + �yLMy�R)+4(2 � g2A8M )A20 + 43A�A� � (4 + 14M )2i�ijkAiAj�k + � � �)℄N;L� = ��yiA(D0 +�� ~D22M )�iA + gN��yiA(wAi N +H::) + � � � ; (1)where we list only the terms pertinent to our alulation. The pion deay onstant is f = 92:4 MeV, �L; �R areSU (2) matries parameterizing the hiral SUL(2)� SUR(2) group and M = diag(mq ;mq) is the quark mass matrixin the isospin limit (the preise onventions used an be found in Appendix A). The values of the other low-energyonstants will be given when we disuss our results. The Goldstone bosons belong to the oset spae[SUL(2)� SUR(2)℄=SUL+R(2), and we are free to hoose an arbitrary member to be the representative of eah oset(\�x the gauge"). Instead of the usual hoie �L = �yR = � = e i���2f , we use the hoie made in bakground �eldalulations �L = u0e i���2f ;�R = uy0e� i���2f ; (2)where u0 is a spae-time independent �eld and �(x) does not ontain zero-modes:�(x) = Xn� 6=(0;~0)�n ei 2�n0� t+i 2�~nL �~x: (3)The rationale to separate zero- and non-zero modes is that, as we will see below, the zero modes obey a di�erentpower ounting from the non-zero ones at small volumes where hiral symmetry is partially restored.The bakground �eld u0 only appears in those terms of the ation whih inlude quark masses. This an be easilyseen by notiing that a non-trivial bakground u0 orresponds to a hiral rotation of the vauum one expandsaround. In the absene of quark masses, all suh vaua are equivalent, so the physis of the Goldstone bosons is thesame. The terms whih do however depend on the quark masses are in the isospin limit withReTr(A) = 12Tr(A +Ay): �mqBf2ReTr(u20e i���f )� 4mqB1N yReTr(u20e i���f )N: (4)At leading order, m2 = 2Bmq is the pion mass in the in�nite volume limit.We an now estimate the di�erent terms of the Lagrangean. The typial utuations of the non-zero modes �(x) areof the order �(x) � � sine, for larger values of �(x), the kineti term is muh larger than one and suppresses theirontribution to the path integral (we an estimate the size of the kineti term as 1=�4 oming from the volumeintegral, �2 from the two derivatives and �2 from the pion �elds). A similar argument implies N � �3=2. However, asobserved by Gasser and Leutwyler [2℄, the zero-mode u0 is of order �0. We an onlude that by notiing that theoeÆient of the �rst term of Eq.(4) is of order � m2f2�L3 � �0. Beause the zero-mode is not suppressed, it has tobe treated exatly. This is related to the restoration of hiral symmetry at �nite temperatures and volumes. In



3small boxes the zero-mode utuates over the whole group manifold, in ontradistintion to the in�nite volume limitin whih the zero-mode makes only small utuations around a preferred vauum diretion. As shown in [2℄ theintegration over the zero-mode an be performed as follows. The part of the partition funtion whih ontains u0an be written asZ[N;�℄ = Z [Du0℄ exp �Z d4x�m2f22 + 2m21N y(x)N (x)��ReTr(u20)�1� �22f2�+ 1f2ReTr(u2i�A�A) + � � ���� Z [Du0℄ esReTr(u20)�1 +ReTr(u20)�2m21 Z d4x N yN �1� �22f2�� m24 Z d4x �2��� X(s) exp[�X 0(s)2X(s) Z d4x ��4m21N y(x)N (x)�1� �22f2�+ m22 �2�℄ (5)where we dropped higher orders in the pion-�elds, s = Bf2mq�L3 = m2f2�L3=2 andX(s) = ZSU(2)[Du20℄ esReTr(u20) = I1(2s)s ; (6)with I1(x) a modi�ed Bessel funtion. The integration over the zero-mode performed above renormalizes thenuleon mass (adding a term proportional to 1 of order �4 to it) and the pion mass (by a term of order �0), as wellas the non-derivative ouplings: M ! M � 4m21 X 0(�L3m2f2=2)2X(�L3m2f2=2) ;m2 ! m2e� = 2mqB| {z }m2 X 0(�L3m2f2=2)2X(�L3m2f2=2) : (7)The e�etive pion mass is shown in Fig. 1. In the limit s!1, one retrieves with X 0(1)=(2X(1)) = 1, thewell-known in�nite-volume results. Notie that the shift of the nuleon and pion masses due to the zero modes
FIG. 1: The e�etive pion mass me� as funtion of �L3m2f2=2, Eq. (7).omes just from quenhing the hiral ondensate in the �nite volume:h0 j�qqj0i�;Lh0 j�qqj0i = X 0(s)2X(s) : (8)The total partition funtion of the system is �nally to the order onsideredZ = Z [DN ℄ [D�℄ e�S0 Z[N;�℄; (9)with S0 the part of the ation (1) whih is independent of zero-modes.



4FIG. 2: Leading-order ontributions to the nuleon mass.NUCLEON MASSThe shift in the nuleon mass due to �nite volume e�ets is given at leading order [O(�3)℄ by the two one-loopdiagrams of Fig. 2. We �nd for the �rst diagram:M (3)a (�; L) = �3g2A4f2 1�L3 Xn� 6=0 i! + 2�n0� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�!!0�! �i3g2A4f2 A (� = 0;me�): (10)The seond diagram is M (3)b (�; L) = �4g2N�3f2 Xn� 6=0 i! + 2�n0� + i� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�!!0�! �i4g2N�3f2 A (�;me� ): (11)Beause mL;m�;�L and �� are all of order � in the � expansion, the m and � ontribution to these graphs are oforder O(�5), so that m (and with that of ourse me�) and � an be dropped from the expressions above.
FIG. 3: Next-to-leading order diagrams for the nuleon mass. The square vertex represents a vertex suppressed by �, the rossa kineti energy insertion, and the irle the zero-mode mass ontribution. The dashed, full and double lines represent a pion,nuleon and � propagator, respetively.The �rst truly spei� feature of the \�-r�egime" appears at order �4, beause the nuleon mass reeives ontributionsfrom the zero modes omputed above in Eq. (7) in addition to the graphs shown in Fig. 3. The �rst graph leads toM (4)a (�; L) = �3�2 + 33f2 1�L3 Xn� 6=0 (2�n0� )2(2�n0� )2 + (2�~nL )2 +m2e� � 33f2 1�L3 Xn� 6=0 (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�= �3�2 + 33f2 C (me� )� 33f2 D (me� ); (12)with �2 = 2 � gA28M . The seond and �fth graph vanishes. The third one givesM (4) (�; L) = 3g2A8Mf2 1�L3 Xn� 6=0 i! + 2�n0� !2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2e�



5= � 3g2A8Mf2 B(� = 0;me�): (13)The fourth graph is the non-perturbative ontribution omputed before in Eq. (7) asM (4)d (�; L) = �2m21X 0(m2f2�L3=2)X(m2f2�L3=2) ; (14)and the last one ontributes asM (4)f (�; L) = 2g2N�3Mf2 1�L3 Xn� 6=0 i! + 2�n0� + i�!2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2e�= � 2g2N�3Mf2 B (�;me� ): (15)The funtions A ; B ; C and D are alulated in Appendix B. We redued them to rapidly onverging sums fornon-zero values of me� and �, but no analyti form is available. A Mathematia notebook omputing thesefuntions is available from the authors' website 1. In the � expansion, the ontributions oming from the �nite valuesof m and � appear only at order �5 in the loop diagrams, so we should take for these m = � = 0 at the order �4 weare working. In this ase, a simple form for the nuleon mass-shift is available:ÆM (3+4) = 1f2L3 �3g2A8 + 2g2N�3 ��1� � (�=L)ML �� 3�2f2L4 �� (�=L) � L��+ 33f2�L3 �2m21�X 0(m2f2�L3=2)X(m2f2�L3=2) � 2� ;(16)where 0 = 1�2 X~j 6=0 1j4 � 1:675 ; � (x) = 02 �X~j 6=0 2�je2�jx � 1 ; (17)with j = j~jj. The funtion � (x) is plotted in Fig. 4.
FIG. 4: �(�=L) as a funtion of the box asymmetry �=L.For not-so-small boxes satisfying mL � �� >� 1, the p expansion applies. The two leading orders in the expansion ofthe nuleon mass in the p-r�egime are very similar to the ones in the �-r�egime. The di�erenes are: i) leading andnext-to-leading order are swithed as the quark mass insertion proportional to 1 is the leading (p2) orderontribution while the diagrams in Fig. 2 are the next-to-leading (p3) ontribution (terms proportional to 2; 3 areeven higher, namely p4); and ii) the non-zero value of m and � should be kept in the diagrams. For this reason, ifwe keep the pion mass in our alulations, whih in the �-r�egime is a sub-leading (�5) e�et, our expressions will bevalid in both r�egimes and, in partiular, in the intermediate region (L; �) �= 1=m. This way, they also inlude some,but not all O(�5) piees 2. Furthermore, sine the pion mass in the �-r�egime has a orretion of order �0 oming fromthe integration over the zero-mode (Eq.(7)), we use me� in the one-loop diagrams.1 http://nta0.lbl.gov/~bedaque/index.html or http://ph.tum.de/~hgrie2 Our results are also valid in the limit � !1 as long as this limit is taken at �xedm. Ifm2� is kept �xed instead with s = m2�f2L3=2 �1, the mass term does not prevent the (~n = 0; n0 6= 0) modes to have large utuations and they beome non-perturbative. This is theÆ r�egime disussed �rst in Ref. [4℄.

http://ph.tum.de/~hgrie


6EUCLIDEAN TIME AND THE CORRECT ANALYTIC CONTINUATIONThere is a subtlety in omputing the nuleon mass using the ombination of the �nite-temperature imaginary timeand heavy baryon formalisms we used. To see that, onsider the derivation of the heavy baryon Lagrangean. Onestarts from the relativisti nuleon �eld  and performs a �eld rede�nition whih reads in Eulidean spae (�; ~r) = e�M� (N (�; ~r) +H(�; ~r)); (18)where M is the heavy nuleon mass and N and H are the nuleon and (anti)-nuleon �elds satisfying0N = N; 0H = �H. An \on-shell"  �eld has a fast variation with time (�0 �M ), while an \on-shell" Nsatis�es �0N � 0. The Lagrangean in terms of these new variables is� (�00 +M ) ! N y(�0 + � � �)N +Hy(�0 � 2M + � � �)H + � � � : (19)The \heavy" �eld H an then be integrated out and we are left with the usual heavy baryon Lagrangean. Notiethat the anti-periodi boundary ondition in the time diretion for the relativisti �eld implies a di�erent boundaryondition for the heavy-nuleon �eld (�; ~r) = � (0; ~r)) N (�; ~r) = �e�MN (0; ~r): (20)Therefore, the �eld N has the Fourier deompositionN (�; ~r) =Xn0 e�i(�(2n0+1)� +iM)�N (n0; ~r) : (21)The orrelators of the �eld N are de�ned only at shifted values of (imaginary) frequeny, namely at! = �(2n+ 1)=� + iM .Consider now, as an example, the omputation of the �rst diagram in Fig. 2. For simpliity, we onsider the in�nitespatial volume limit. As shown in Appendix C, the sum over n an be performed resulting up to onstants inG(!) = 1�Xn Z d3k(2�)3~k2 i2�n� + ! + i� 1(2�n� )2 + !2k= Z dk4(2�)4 1k0 + ! + i� ~k2k20 + !2k � i Z dk3(2�)3 ~k2(! + i�)2 + !2k 1e�(��i!) � 1+ Z dk3(2�)3 ~k2(! + i�)2 + !2k ! + i�!k 1e�!k � 1 : (22)where ! is the external energy and !2k = ~k2 +m2. We now substitute ! from above into the seond term,1e�(��i!) � 1 = � 1e�(M+�) + 1 � 0; (23)leading to the orret statistis for fermioni ensembles. Physially, that we neglet these utuations just mirrorsthe fat that �nite-temperature utuations of heavy partiles are muh smaller than those of light ones fortemperatures �M � 1 at whih the heavy-baryon formalism applies. Therefore, we drop this term and arrive atG(!) = Z dk4(2�)4 1k0 + ! + i� ~k2k20 + !2k + Z dk3(2�)3 ~k2(! + i�)2 + !2k ! + i�!k 1e�!k � 1 : (24)The nuleon propagator at any value of the external energy (inluding real values) an be obtained from theexpression above by analytially ontinuing in !. In partiular, the value determining the mass is obtained for ! = 0.Clearly, this proedure seems arbitrary for two reasons. First, it seems to depend on the order between setting ! to! = �(2n+ 1)=� + iM and analytially ontinuing to ! = 0. Seond, the knowledge of the propagator at disretevalues of the frequeny is not, in general, enough to determine the propagator on the whole omplex plane. Oneould, for instane, have maintained e�i�! instead of substituting it by �e�M and using e�2�in = 1. Fortunately,the analyti ontinuation is unique for funtions vanishing at in�nity at least like 1=j!j [5℄, as in the ase at hand.Still, to on�rm that we have piked the orret analyti ontinuation, we repeat this alulation in Appendix Cwithout using the heavy baryon formalism in another method to ompute �nite-temperature orretions whih doesnot require an analyti ontinuation to the real axis, namely the \real time formalism".



7NUMERICAL EXAMPLES AND DISCUSSIONWe now present some numerial examples in order to explore the onvergene of the �-expansion and to disuss howit an be used in the one baryon setor. The leading order result depends on two low energy onstants gA = 1:267and gN�, as well as on the masses and mass splittings m, M and �, whose experimental values are reasonably wellknown. At next-to-leading order, the onstants 1; 2 and 3 appear. They are determined experimentally throughthe analysis of pion-nuleon sattering. As they are most sensitive to the isosalar part of the amplitude, wheredi�erent phase shift analyses disagree, large unertainties exist in their determination.When onsidering very low energy observables, as we are here, the inlusion of the � as expliit degree of freedom isoptional. Let us �rst disuss the ase where the � is inluded. In this ase, a determination of the low energyonstants was made by omparing alulations to the pion-nuleon phase shift data [6℄. In this work, di�erent �tswere disussed using two di�erent phase shift analyses, and also inluding information about the �-term. The valuesof 1 and 3 are more stable among di�erent �ts, while 2 varies muh more.Eq.(16) shows however that for a ertain value of the ratio �=L � 1:22262, � (1:22262) = 1=1:22262 and thedependene on 2 disappears. Sine 1 and gN� are muh better determined, one might use the mass-shifts measuredaround this ratio on the lattie to determine 3. The 2-ontribution is generially negligible for �=L � [1 : : :1:7℄.In Fig. 5, we present results using the parameter set (�t 2y of Table 4 in [6℄) :gN� = 1:00� 0:08;1 = �0:35� 0:09=GeV;2 = �1:49� 0:67=GeV;3 = 0:93� 0:87=GeV: (25)The errors quoted ome from the �t and under-estimate the unertainty in the onstants from higher-orderorretions. In the left panel of Fig. 5, we show the leading ontribution and its next-to-leading order orretion tothe mass shift omputed both using Eq.(16) and the full formula with �nite meff and �. The expansion inm=(4�f);�=(4�f) seems to onverge for the low-energy onstants i in the given range, exept for those lose to theupper limit and for L smaller than about 1:5 fm, where one approahes the breakdown sale: L=(2�) � 1=(4�f).The right panel displays the total mass shift up to seond order for di�erent values of 3 between the minimum andmaximum values suggested by Eq.(25). We notie that the anellation of the 2-ontribution for � = 1:22262Lworks very well even for non-zero pion masses, with its ontribution to the mass shift never exeeding 5 MeV evenfor m = 300 MeV.
FIG. 5: Left: Finite-volume mass-shift of the nuleon in the theory with expliit � degrees of freedom in MeV as funtion ofL [fm℄ with the entral values of the parameter set in Eq.(25). Leading order with full expansion (blue solid line); and usingm = � = 0 Eq.(16) (green dash-dotted). Next-to-leading order orretion in the full expansion (red dashed); and from Eq.(16)(green dotted). The gray zone shows the variation of the mass shift as 3 varies in the range given in Eq.(25), with the upperlimit orresponding to 3 = 1:8/GeV. Right: Total mass-shift at leading order (blue solid line) and at leading + next-to-leadingorder for 3 = 0:06/GeV, 0:93/GeV and 1:8/GeV from top to bottom (red dashed). The parameters � = 1:22262L, m = 100MeV and � = 294 MeV are the same for both �gures.In a e�etive theory without expliit �, its large rôle in the pion-nuleon interation is absorbed by the ouplings 2and 3. In fat, a simple tree level model of the � ontribution gives a ontribution of2 = �3 = g2A�=(2(�2 �m2)) � 4=GeV. These values are somewhat larger than what is expeted from naivedimensional analysis arguments and puts the quark mass expansion in hek. The values suggested by di�erent �ts



8[7, 8, 9℄ roughly agree with the � saturation estimate. We show in Fig. 6, as an example, the mass shift omputedwith the entral values of the parameter set 1 = �0:81� 0:15=GeV;2 = 2:99� 0:77=GeV;3 = �4:70� 0:95=GeV (26)advoated in [7℄, as well as for a somewhat smaller value of 3 = �3:4/GeV found e.g. in the partial wave analysis ofnuleon-nuleon sattering [8℄. The onvergene is obviously poor in either ase. While the ontributions from 2and 3 an be made small for ertain ratios �=L, this anellation depends sensitively on the partiular valueshosen for 2 and 3 and is hene less useful for lattie determinations. At the ratio �=L = 1:22262, the2-ontribution disappears as before, but it is already negligible at � = L. Indeed, a plot of the next-to-leading orderorretion with �=L = 1:22262 di�ers from Fig. 6 at most at the 5%-level.
FIG. 6: Example of the �nite-volume mass-shift of the nuleon at leading order (solid line) and the next-to-leading orderorretion (dashed lines) in MeV as funtion of L [fm℄ in the theory without expliit � degrees of freedom. The lower dashedurve uses the entral values of the parameter set in Eq.(26), the lower one hanges only 3 = �3:4/GeV following [8℄. Thepion mass is m = 100 MeV, and � = L. Dot-dashed (dotted): LO (NLO) for m = � = 0.One might wonder why the expansion in the �-regime is so sensitive on the low-energy onstants and onvergesbadly in the ase without �, while it is well behaved in the in�nite volume limit. This seems to arise beause 2 and3 appear only at third order in the p-expansion and are, onsequently, poorly determined. In the �-r�egime, theyontribute already at seond order, so that the unertainty in their values is enhaned.CONCLUSIONSWe have omputed the nuleon mass in a �nite box of size � � L3 satisfying 4�f � 2�=�; 2�=L� m (�-regime).Taking the value of the low energy onstants suggested by experiment, we �nd that the expansion seems to onvergefor the values of the low energy onstants allowed by �ts made to pion-nuleon sattering data, if the �(1232) istaken into aount as expliit degree of freedom. We notie that a partiular shape of the box (� � 1:22262L)eliminates the dependene on one of the low energy onstants (2) and suggests determining the value of the mostpoorly known one (3) by a �t to the nuleon mass with a few di�erent box sizes. We also disussed a subtle pointinvolving the ombined use of the imaginary time and heavy baryon formalisms.We lose with the remark that it may seem strange to ompute pion loops in small boxes of sizes � 1 fm4, sine themomentum of the �rst non-zero mode p � 1:2 GeV is well above the range of validity of Chiral Perturbation Theory.An alternative to our proedure that is not subjet to this ritiism would be to integrate out all modes but thezero-mode and obtain an e�etive theory whih is valid only for zero-momentum observables like the mass omputedhere. We point out, however, that in order to onnet the low-energy onstants of this new theory with theparameters of the original hiral Lagrangean, one has to perform a mathing alulation that is equivalent to thealulation presented in this paper.



9ACKNOWLEDGEMENTSWe would like to thank W. Detmold, Th. R. Hemmert, N. Kaiser, U.-G. Mei�ner and M. Savage for disussions onthe topi. H.W.G. and G.R. are grateful to the Nulear Theory Group at Lawrene Berkeley National Laboratoryfor warm hospitality and �nanial support during the �rst stages of this work, and H.W.G. to the Nulear TheoryGroup at Los Alamos National Laboratory for the same reason. H.W.G. is supported in part by theBundesministerium f�ur Forshung und Tehnologie and by the Deutshe Forshungsgemeinshaft under ontratGR1887/2-2. This work was supported in part by the U.S. Department of Energy under ContratNo. DE-AC03-76SF00098 and W-7405-ENG-36.APPENDIX A: CONVENTIONSWe ollet here the de�nitions used in the onstrution of the hiral Lagrangean. Elements of SUL(2)� SUR(2) areparameterized by (�L; �R). N is a spin and isospin doublet with its indies not shown expliitly. �iA is aspin-isospin 3=2-�eld, where the vetor and isovetor indies jA are expliitly shown, besides the impliit spin andisospin indies. In addition, it satis�es �i�iA = �A�iA = 0 so only 4 spin and 4 isospin entries are independent, asexpeted for (iso)spin 3=2 objets. The hiral transformation rules are�L ! L�Lh�1;�R ! R�Rh�1;N ! hN;�iA ! 12Tr(h�1�Ah�B)| {z }OAB h�iB; (27)where OAB is an orthogonal matrix whih is determined by h via h�1�Ah = OAB�B, where h in turn depends on�(x); L and R. In addition, we de�ne some objets with simple hiral transformation rulesV� = 12(�yR���R + �yL���L)! hV�h�1 + h��h�1;A� = i2(�yR���R � �yL���L)! hA�h�1;D�N = ��N + V�N ! hD�N;D��iA = ���iA + V��iA + i�ABCTr(�BV�)�iC !OABhD��iB;D�A� = ��A� + [V�;A�℄! hD�A�h�1;wA� = Tr(�AA�)!OABwB� ;wA�� = Tr(�AD�A�)!OABwB�� : (28)APPENDIX B: CALCULATION OF SUMSIn this appendix, we drop for larity the subsript of the e�etive pion mass me� and denote it by m. The LOdiagrams ontain then the sumA (�;m) = 1�L3 Xn� 6=0 1! + 2�n0� + i� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2= A 0(�;m) + A � (�;m); (29)where ! = 2�(k + 1=2)=� is a disrete external energy and k an integer. The ultraviolet divergene of A is identialto the one in the in�nite-volume diagram and anels in the di�erene between �nite and in�nite volume masses.For this anellation to our, it is important to use the same regulator in both alulations. In pratie, we shouldtherefore de�ne the sum above using dimensional regularization. A 0 and A � are the temperature independent and



10the �nite temperature parts:A 0 (�;m) = Z dk02� 1L3 X~n 1k0 + ! + i� (2�~nL )2k20 + (2�~nL )2 +m2 ;A � (�;m) = iL3 X~n �� i!!2n � (�� i!)2 (2�~nL )2!n 1e�!n � 1 � iL3 X~n (2�~nL )2!2n � (�� i!)2 1e�(��i!) � 1 ; (30)where !2n = 2�~nL 2 +m2. We used the formula1�Xn f(2�n� ) = Z 1�1 dz2�f(z) � iRes( f(z)ei�z � 1)jlowerplane + iRes( f(z)e�i�z � 1)jupperplane; (31)whih holds if f(z) has no poles on the real axis. We substitute 1=(e�(��i!) � 1) by �1=(e�(�+M) + 1) � 0 as inEq. (23). The zero-temperature part an be omputed with the help of the relation [10℄1L3 X~n (2�~nL )2m(2�~nL )2 + x2 = 1L3 Z d3k k2mk2 + x2 X~n Æ(~k � 2�~nL ) = Z d3k(2�)3 k2mk2 + x2 X~n Æ(~kL2� � ~n)| {z }P~j eiL~k�~j= Z d3k(2�)3 k2mk2 + x2 + Z d3k(2�)3 X~j 6=0 k2mk2 + x2 eiL~k�~j= Z d3k(2�)3 k2mk2 + x2 +X~j 6=0 12�2L Z 10 dkk(2m+1)k2 + x2 sin(jkL)j= Z d3k(2�)3 k2mk2 + x2 + ��x2�m4�L X~j 6=0 e�jxLj ; (32)where m is a positive integer. Applying this relation to A 0 yieldsÆA 0 = A 0 � A (� !1; L!1) = i�24�2LX~j 6=0 1j 1� Z 10 dk0k20 +m2k20 +�2 e�jLpk20+m2| {z }g(jL;m;�) : (33)Asymptotially, the sum over j onverges beauseg(jL;m;�) j!1! m5=2�3 r �2jLe�jmL + � � � ;g(jL; 0;�) j!1! 2j3L3�3 + � � � : (34)These asymptoti forms are also useful in the numerial evaluation of the sum over ~j.We also need A 0 evaluated at � = 0. We an obtain this limit notiing that the integral de�ning g(jL;m;�) isnearly infrared divergent when �! 0, and hene is dominated by small values of k0. The �! 0 limit ofg(jL;m;�) is given by g(jL;m;�) �!0�! 1� Z 10 dk0k20 +m2k20 +�2 e�jmL�jL k202m = �2 m2�2 e�jmL: (35)Using this result, ÆA 0 (� = 0;m) = im28�LX~j 6=0 e�jmLj : (36)



11The expression above agrees with that of Ref. [1℄. The limit m! 0 is found by notiing that for small values of m,the sum is dominated by the large j terms, whih in turn an be approximated by an integralÆA 0 (� = 0;m) m!0�! im28�L4� Z 10 je�jmL m!0�! i2L3 : (37)The double limit �! 0;m! 0 an also be obtained in the opposite order, and the result is the same:ÆA 0 (�;m = 0) = i4�2LX~j 6=0 1j� Z 10 dk0 k20k20 +�2 e�jLk0= i�24�2LX~j 6=0 1j � 1jL� � Ci(jL�) sin(jL�) + Si(jL�) os(jL�)� �2 os(jL�)�| {z }g(jL;0;�)�!0! i�24�2L4� Z 10 djjg(jL; 0;�)| {z }�2L2�2 = i2L3 (38)The �nite-temperature part onverges very quikly:A � = iL3 X~n �!2n ��2 (2�~nL )2!n 1e�!n � 1�!0�! 0: (39)The seond sum we need is B (�;m) = 1�L3 Xn� 6=0 12�n0� + i�!2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2 : (40)We use Eq.(31) to separate it into a temperature-independent (B0 ) and a temperature-dependent part (B� ). The�rst one is with Eq. (32)B0 = Z d4k(2�)4 1(k0 + i�)2 ~k4k20 + ~k2 +m2 + 1�2LX~j 6=0 1j Z dk02� 1(k0 + i�)2 Z 10 dk k5��k20 + k2 +m2 sin(jkL) ; (41)ÆB0 = B0 � B(� !1; L!1) = 14�2LX~j 6=0 1j Z 10 dk0 k20 ��2(k20 +�2)2 (k20 +m2)2e�jLpk20+m2| {z }�3h(jL;m;�) : (42)The sums over j onverge, given the asymptoti behaviorsh(jL;m;�) j!1�! p�m4(jL)3=2 e�jmL�3 (m + jL(�2 � 2m2));h(jL;m; 0) j!1�! � 12j5L5�5 + � � � : (43)Eq.(43) an be obtained from the integral representation above notiing that, for large j, the integral is dominatedby small values of k0. These relations show that the sum in Eq.(42) onverges (quikly).We also need the value of ÆB at � = 0, where h(j; L;m;�) is apparently infrared divergent, but this limit is atually�nite. It is most easily obtained by ontinuing the k0 integral to 1 + � dimensions and taking the �! 0 limit at theend, with Kn again a modi�ed Bessel funtion:ÆB0 (� = 0;m) = 14�2LX~j 6=0 1j 1Z0 d1+�k0 (k20 +m2)2k20 e�jLpk20+m2



12= m34�2LX~j 6=0 1j 1Z1 dx x5(x2 � 1) 3��2 e�jLmx= m34�2LX~j 6=0 1j �4�(jLm)4 1Z1 dx x(x2 � 1) 3��2 e�jLmx= m4�2L3 X~j 6=0 1j3 �(jLm � (jLm)3)K0(jLm) + 2(1 + (jLm)2)K1(jLm)� ; (44)We an further take the limit m! 0:ÆB0 (� = 0;m! 0) = 12�2L4 X~j 6=0 1j4 = 02L4 : (45)To take the double limit in the opposite order leads { not surprisingly { to the same result:ÆB0(�;m = 0) = 14�2LX~j 6=0 1j Z 10 dk0k40 k20 ��2(k20 +�2)2 e�jLjk0j| {z }�3h(jL;0;�)= �38�2LX~j 6=0 1j �4� 6(jL�)2(jL�)3 + 2Ci(jL�) [jL�os(jL�) + 4 sin(jL�)℄+ 2Si(jL�) [jL�sin(jL�)� 4 os(jL�)℄35�!0�! 12�2L4 X~j 6=0 1j4 = 02L4 : (46)After performing the orret analyti ontinuation, the temperature-dependent part B� isB� = � 1L3 X~n !2n +�2(!2n ��2)2 (2�~nL )4!n 1e�!n � 1 : (47)Finally, we use similar steps for C and D :C (m) = 1�L3 Xn� 6=0 (2�n0=�)2(2�n0=�)2 + (2�~n=L)2 +m2= Z d4k(2�)4 k20k20 + ~k2 +m2 + m2(2�)2L2 X~j 6=0 K2(jmL)j2 � 1L3 X~n !ne�!n � 1 : (48)D (m) = 1�L3 Xn� 6=0 (2�~n=L)2(2�n0=�)2 + (2�~n=L)2 +m2= Z d4k(2�)4 ~k2k20 + ~k2 +m2 � m3(2�)2LX~j 6=0 1j �K1(jmL) + K2(jmL)jmL �+ 1L3 X~n (2�~nL )2!n 1e�!n � 1 ; (49)For m! 0, one has to be areful with the mode ~n = 0:C (m = 0) = 02L4 � 1L4 X~n6=0 2�ne2� �Ln � 1 � 1�L3 = � (�=L)L4 � 1�L3D (m = 0) = � 02L4 + 1L4 X~n6=0 2�ne2� �Ln � 1 = �� (�=L)L4 : (50)



13APPENDIX C: RELATIVISTIC CALCULATION, REAL TIME FORMALISM AND THE CORRECTANALYTIC CONTINUATIONIn order to verify our proedure to ompute the �nite temperature orretions of the nuleon mass, we now repeatthe alulation of the simplest diagram by dispensing of the simpli�ations due to the use of both the heavy-baryonand the imaginary time formalisms, followed by analyti ontinuation to the real axis.The real-time �nite temperature formalism (RTF) is another way of (perturbatively) omputing �nite-temperatureorretions. As opposed to the more ommon imaginary-time formalism (ITF), it omputes orrelators diretly inreal time and ontinuous frequenies. The Feynman rules are very similar to the ones at zero temperature, exeptthat the propagators ontain an additional term desribing the inuene of the thermal medium on the propagationof the partiles 3. The pion propagator beomesiD(k) = ik20 � ~k2 �m2 + i0 + 2�nB(jk0j)Æ(k20 � ~k2 �m2); (51)where nB(jk0j) = (e�jk0 j � 1)�1 is the bosoni distribution funtion. The fermion propagator isiS(p) = (ip�� +M )� 1p20 � ~p2 �M2 + i0 � 2�nF (jp0j)Æ(p20 � ~p2 �M2)�p0!M+k0;~p!~k�= ik0 + i0 � 2�nF (jM + k0j)Æ(k0); (52)where nF (k0) = (ejk0j + 1)�1 is the Fermi distribution funtion. The physial origin of these extra terms is the Paulibloking (in the ase of fermions) or stimulated emission (in the boson ase) aused by the real, on-shell partilespresent in the medium. In the fermioni ase, for instane, a state that is fully oupied (nF = 1) reverts the sign ofthe \i�" presription and the fermion an propagate as a hole. Notie that the number density of partiles in theheavy baryon propagator is nF (jM + k0j) (as opposed to nF (jk0j)) and therefore exponentially small at alltemperatures �M � 1 where the e�etive theory applies. As an example, let us ompute the real part of the seonddiagram in Fig. 2, for notational simpliity in the in�nite volume. Up to irrelevant onstants,iG(E) = Z d4k(2�)4~k2((E + k0)0 � ~k � ~ +M�)" ik20 � ~k2 �m2 + i0 + 2�nB(jk0j)Æ(k20 � ~k2 �m2)#" 1(E + k0)2 � ~k2 �M2� + i0 + 2i�nF (E + k0)Æ((E + k0)2 � ~k2 �M2�)# : (53)Using the relation 1x+ i0 = P �1x�� i�Æ(x); (54)where P stands for the prinipal value, the real part of G(!) isReG(!) = Z d3k(2�)3~k2 "1 + 2nB(!k)2!k  (E + !k)0 � ~k � ~ +M�(E + !k)2 � ~k2 �M2� + (E � !k)0 � ~k � ~ +M�(E � !k)2 � ~k2 �M2� !+1 � 2nF (q~k2 +M2�)2q~k2 +M2� ��iq~k2 +M2�0 � i~k � ~ +M���0� 1(�E +q~k2 +M2�)2 � !2k + 1(E +q~k2 +M2�)2 � !2k1A35E=M+!� Z d3k(2�)3 ~k2P � 1(�� !)2 � !2k��! ��2!k (1 + 2nB(!k)) + 1� 2nF (M +�� !)2 � : (55)3 In diagrams with more than one loop, the RTF rules are a little more involved.
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